Relaxin Signals through a RXFP1-pERK-nNOS-NO-cGMP-Dependent Pathway to Up-Regulate Matrix Metalloproteinases: The Additional Involvement of iNOS
نویسندگان
چکیده
The hormone, relaxin, inhibits aberrant myofibroblast differentiation and collagen deposition by disrupting the TGF-β1/Smad2 axis, via its cognate receptor, Relaxin Family Peptide Receptor 1 (RXFP1), extracellular signal-regulated kinase (ERK)1/2 phosphorylation (pERK) and a neuronal nitric oxide (NO) synthase (nNOS)-NO-cyclic guanosine monophosphate (cGMP)-dependent pathway. However, the signalling pathways involved in its additional ability to increase matrix metalloproteinase (MMP) expression and activity remain unknown. This study investigated the extent to which the NO pathway was involved in human gene-2 (H2) relaxin's ability to positively regulate MMP-1 and its rodent orthologue, MMP-13, MMP-2 and MMP-9 (the main collagen-degrading MMPs) in TGF-β1-stimulated human dermal fibroblasts and primary renal myofibroblasts isolated from injured rats; by gelatin zymography (media) and Western blotting (cell layer). H2 relaxin (10-100 ng/ml) significantly increased MMP-1 (by ~50%), MMP-2 (by ~80%) and MMP-9 (by ~80%) in TGF-β1-stimulated human dermal fibroblasts; and MMP-13 (by ~90%), MMP-2 (by ~130%) and MMP-9 (by ~115%) in rat renal myofibroblasts (all p<0.01 vs untreated cells) over 72 hours. The relaxin-induced up-regulation of these MMPs, however, was significantly blocked by a non-selective NOS inhibitor (L-nitroarginine methyl ester (hydrochloride); L-NAME; 75-100 µM), and specific inhibitors to nNOS (N-propyl-L-arginine; NPLA; 0.2-2 µM), iNOS (1400W; 0.5-1 µM) and guanylyl cyclase (ODQ; 5 µM) (all p<0.05 vs H2 relaxin alone), but not eNOS (L-N-(1-iminoethyl)ornithine dihydrochloride; L-NIO; 0.5-5 µM). However, neither of these inhibitors affected basal MMP expression at the concentrations used. Furthermore, of the NOS isoforms expressed in renal myofibroblasts (nNOS and iNOS), H2 relaxin only stimulated nNOS expression, which in turn, was blocked by the ERK1/2 inhibitor (PD98059; 1 µM). These findings demonstrated that H2 relaxin signals through a RXFP1-pERK-nNOS-NO-cGMP-dependent pathway to mediate its anti-fibrotic actions, and additionally signals through iNOS to up-regulate MMPs; the latter being suppressed by TGF-β1 in myofibroblasts, but released upon H2 relaxin-induced inhibition of the TGF-β1/Smad2 axis.
منابع مشابه
Relaxin signaling activates peroxisome proliferator-activated receptor gamma.
Relaxin is a polypeptide hormone that triggers multiple signaling pathways through its receptor RXFP1 (relaxin family peptide receptor 1). Many of relaxin's functions, including vascular and antifibrotic effects, are similar to those induced by activation of PPARgamma. In this study, we tested the hypothesis that relaxin signaling through RXFP1 would activate PPARgamma activity. In cells overex...
متن کاملThe Effect of Fatty Liver Disease on the Expression of RXFP1 and CTGF Genes in Cardiac Tissue of Wistar Rats
Background & Aims: Performing physical activity and having a healthy body is one of the most essential life needs of people with fatty liver. In recent years, studies have been performed on the relationship between fatty liver and arthrosclerosis. The results of these studies indicate the relationship between the Non-alcoholic fatty liver and arthrosclerosis of coronary artery disease. Non-alco...
متن کاملRelaxin family peptide receptor-1 protects against airway fibrosis during homeostasis but not against fibrosis associated with chronic allergic airways disease.
Endogenous relaxin has recently been demonstrated to protect the airway/lung against age-related fibrosis and against inflammation-associated airway fibrosis in animal models of allergic airways disease (AAD). In the current study, we examined the contribution of the primary relaxin receptor, relaxin family peptide receptor-1 (RXFP1), in mediating these effects of relaxin. Lung tissues from hea...
متن کاملRelaxin family peptide receptors RXFP1 and RXFP2 modulate cAMP signaling by distinct mechanisms.
Two orphan leucine-rich repeat-containing G protein-coupled receptors were recently identified as targets for the relaxin family peptides relaxin and insulin-like peptide (INSL) 3. Human gene 2 relaxin is the cognate ligand for relaxin family peptide receptor (RXFP) 1, whereas INSL3 is the ligand for RXFP2. Constitutively active mutants of both receptors when expressed in human embryonic kidney...
متن کاملRelaxin activates peroxisome proliferator-activated receptor γ (PPARγ) through a pathway involving PPARγ coactivator 1α (PGC1α).
Relaxin activation of its receptor RXFP1 triggers multiple signaling pathways. Previously, we have shown that relaxin activates PPARγ transcriptional activity in a ligand-independent manner, but the mechanism for this effect was unknown. In this study, we examined the signaling pathways of downstream of RXFP1 leading to PPARγ activation. Using cells stably expressing RXFP1, we found that relaxi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012